

Neutrino Oscillations with IceCube/PINGU

Tyce DeYoung Department of Physics and Astronomy Michigan State University

ICECUBE

Workshop on the Intermediate Neutrino Program Brookhaven National Laboratory February 5, 2015

GENERATION UPGRADE

Oscillation Physics with Atmospheric Neutrinos

- Neutrinos available over a wide range of energies and baselines
 - Oscillations produce distinctive pattern in energy-angle space
 - Approach: control systematics using events in "side band" regions – trade statistics for constraints on systematics
- Neutrinos oscillating over one Earth diameter have a v_{μ} survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects on v or v̄ (MSW etc.) below 10-20 GeV

Atmospheric Oscillations with IceCube

- Project data onto reconstructed (L/E_v) for illustration
 - Actual analysis is performed in 2D to control systematics
- Shaded range shows allowed systematics with constraints from current data
- Second survival maximum just below DeepCore's energy threshold

PINGU

- Baseline detector consists of 40 additional strings of 60 Digital PRECISION ICECUBE NEXT Optical Modules each, deployed inside the DeepCore volume
 - Geometry optimization underway additional DOMs have relatively low incremental cost – final proposal likely 80-96 DOMs/string
 - 20-22 m string spacing (cf. 125 m for IceCube, 72 m for DeepCore)
 - ~25x higher photocathode density
 - Additional in situ calibration devices will better control detector systematics (not included in projected performance)
- Engineering issues and cost of deploying instrumentation are well understood from IceCube experience
 - Can install ≥20 strings per season once underway

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels
 - At higher energies, v_{μ} CC events distinguishable by the presence of a muon track

Signatures of the Neutrino Mass Hierarchy

- Matter effects alter oscillation probabilities for neutrinos or antineutrinos traversing the Earth
 - Maximum effects seen for specific energies and baselines (= zenith angles) due to the Earth's density profile
 - Neutrino oscillation probabilities affected if hierarchy is normal, antineutrinos if inverted
 - Rates of all flavors are affected
 - Note: effect of detector resolution not shown here
- Distinct signatures observable in both track (v_{μ} CC) and cascade (v_{e} and v_{τ} CC, v_{x} NC) channels
 - At higher energies, v_μ CC events distinguishable by the presence of a muon track

Hierarchy Signature: Statistical Significance

- With full detector response included, distinctive (and quite different) hierarchydependent signatures are still visible in both the track and cascade channels
 - Quantity shown is an illustration of statistical significance per bin (as per Akhmedov et al. arXiv:1205.7071)
 - Parametrized rates and detector resolutions and efficiencies used to eliminate statistical fluctuations

Analysis Improvements Underway

- Increased #DOMs/string to match baseline Gen2 High Energy design (marginal cost of DOMs is relatively small)
- Inclusion of additional detector-related effects on event reconstruction appears minimal
 - Uncertainties in optical properties of South Pole ice (e.g. anisotropic scattering)
 - Injecting DOM-by-DOM calibration errors for sensitivity to Cherenkov photons, in addition to possible systematic errors in energy scale calibration (already included)
- Correcting Monte Carlo error in non-Poissonian noise levels in simulated PINGU DOMs
- Treatment of v-N interaction uncertainties via GENIE instead of ad hoc scaling
- Detailed modeling of atmospheric flux uncertainties (per Barr et al. astro-ph/0611266)
 rather than simpler scaling of flux level and spectral index
- Incorporating full suite of systematic uncertainties into likelihood-based significance estimates from ensemble of pseudo-data sets (so far only checks with reduced sets)

Neutrino Interaction Uncertainties

- Biggest effects so far: uncertainties in Bodek-Yang higher twist parameters, axial mass term for hadron resonance production
 - Ad hoc scalings still included, and covariance not accounted for – may be over-counting...
- Increases median time-to-3σ by about half a year

Other Oscillation Parameters

- PINGU not sensitive to δ_{CP} complementarity with NOvA, T2K
- Sensitivity to the mass ordering strongly dependent on θ_{23} octant
 - Worst-case first octant solution assumed in performance studies
 - Implies considerable ability to measure octant (not yet evaluated explicitly)

• Precision for θ_{23} and $\Delta m^2_{\rm atm}$ being evaluated, appears comparable to NOvA or T2K 2020 expectations

For the difference of the numbers of events for the two hierarchies (3.6) we obtain

$$\begin{split} D_{\mu}^{\rm IH} - D_{\mu}^{\rm NH} &\approx \sigma^{\rm CC} \Phi_{\mu}^0 \bigg\{ \frac{1}{2} \sin^2 2\theta_{23} (1 - \kappa_{\mu}) \big(\cos \phi_{32} - \sqrt{1 - P_A} \cos \phi_X \big) + \\ &+ s_{23}^2 \bigg[(1 - \kappa_{\mu}) s_{23}^2 - \bigg(\frac{1}{r} - \frac{\kappa_{\mu}}{\bar{r}} \bigg) \bigg] P_A \bigg\} \,. \end{split}$$

Akhmedov, Razzaque, and Smirnov arXiv:1205.7071

- Sensitivity to the mass ordering strongly dependent on θ_{23} octant
 - Worst-case first octant solution assumed in performance studies
 - Implies considerable ability to measure octant (not yet evaluated explicitly)

• Precision for θ_{23} and $\Delta m^2_{\rm atm}$ being evaluated, appears comparable to NOvA or T2K 2020 expectations

Tau Neutrino Appearance

- Energy range of PINGU allows uniquely high tau neutrino rates
 - Measure v_τ appearance as characteristic distortion of cascade angular/energy distribution
- Interesting test of unitarity of 3x3 neutrino mixing
 - Direct probe of $U_{\tau 3}$
 - 10% precision on v_τ appearance rate within a year

IceCube-Gen2

 Planning underway for a multipurpose facility leveraging the experience and investment in IceCube

 White paper describing our vision of this detector at arXiv:1412.5106

 PINGU will be one component of IceCube-Gen2

Cost and Schedule

- Primary US funding source for IceCube-Gen2 would be NSF
 - MREFC-scale facility, total cost comparable to original IceCube
 - Many items common to PINGU and other elements (drill, engineering, etc.)
 - Marginal cost of PINGU within larger IceCube-Gen2 is \$88M, with expected non-US contributions of \$25M
- Gen2 conceptual design document and PINGU performance update this year
- In a favorable scenario, PINGU completion possible by January 2021 or 2022

Cost for PINGU Con	nponent
Hardware	\$48M
Logistics	\$23M
Contingency	\$16M
Expected non-US contributions	\$25M
Total US Cost	\$63M

(elements do not sum to total due to rounding)

Conclusions

- PINGU has a unique place in the world-wide neutrino program
 - Measurements at a range of higher energies/longer baselines, with high statistics
- Opportunity to discover new physics is greatly enhanced by PINGU's complementarity with other experiments
- PINGU will be a natural part of the IceCube-Gen2 Observatory
 - Closely based on IceCube technology low technical and cost risk
 - PINGU will use the same hardware as high energy extensions of IceCube –
 common design gives flexibility to optimize based on progress of the field
- Focus today is on neutrino physics, but also interesting potential in searches for low mass dark matter and other exotica

Backup Slides

Estimating Sensitivity to the Mass Hierarchy

- Fisher Information Matrix method uses parametrized detector response based on full simulation, uses gradients in likelihood space to determine width of parabolic minimum
- Full Monte Carlo method uses likelihood ratio analysis of pseudodata sets: slower, includes fewer systematics but does not presuppose distributions are Gaussian
- For common set of systematics and high statistics, the methods agree

Relative Impact of Systematics

preliminary

		<u> </u>	
Parameter	Total (%)	Cascades (%)	Tracks (%)
hierarchy	100.0	100.0	100.0
Δm_{31}	13.9	10.4	32.6
$\overline{\nu}$ xsec scale	12.2	4.2	0.1
higher-twist BY	10.3	6.9	12.3
MaCCRES	8.1	2.7	5.2
θ_{13}	5.4	2.0	5.2
$C\nu$ -BY	5.1	0.8	10.2
θ_{23}	5.0	10.5	16.4
energy scale	1.0	2.0	3.8
ν xsec scale	0.8	4.5	0.2
MaCCQE	0.6	3.2	1.7
effective area scale	0.1	1.6	1.0

Resolutions v_µ, 9-11 GeV

